Check out what POPS for us in our work at Emory University.
neurosciencestuff:

'Support cells' in brain play important role in Down syndrome
Researchers from UC Davis School of Medicine and Shriners Hospitals for Children – Northern California have identified a group of cells in the brain that they say plays an important role in the abnormal neuron development in Down syndrome. After developing a new model for studying the syndrome using patient-derived stem cells, the scientists also found that applying an inexpensive antibiotic to the cells appears to correct many abnormalities in the interaction between the cells and developing neurons.
The findings, which focused on support cells in the brain called astroglial cells, appear online today in Nature Communications.
“We have developed a human cellular model for studying brain development in Down syndrome that allows us to carry out detailed physiological studies and screen possible new therapies,” said Wenbin Deng, associate professor of biochemistry and molecular medicine and principal investigator of the study. “This model is more realistic than traditional animal models because it is derived from a patient’s own cells.”
Down syndrome is the most common chromosomal cause of mild to moderate intellectual disabilities in the United States, where it occurs in one in every 691 live births. It develops when a person has three copies of the 21st chromosome instead of the normal two. While mouse models have traditionally been used in studying the genetic disorder, Deng said the animal model is inadequate because the human brain is more complicated, and much of that complexity arises from astroglia cells, the star-shaped cells that play an important role in the physical structure of the brain as well as in the transmission of nerve impulses.
“Although neurons are regarded as our ‘thinking cells,’ the astroglia have an extremely important supportive role,” said Deng. “Astroglial function is increasingly recognized as a critical factor in neuronal dysfunction in the brain, and this is the first study to show its importance in Down syndrome.”
Creating a unique human cellular model
To investigate the role of astroglia in Down syndrome, the research team took skin cells from individuals with Down syndrome and transformed them into stem cells, which are known as induced pluripotent stem cells (iPSC). The cells possess the same genetic make-up as the donor and an ability to grow into different cell types. Deng and his colleagues next induced the stem cells to develop into separate pure populations of astroglial cells and neurons. This allowed them to systematically analyze factors expressed by the astroglia and then study their effects on neuron development.
They found that a certain protein, known as S100B, is markedly increased in astroglial cells from patients with Down syndrome compared with those from healthy controls. S100B released by astroglial cells promotes harmful astroglial activation (astrogliosis) and adversely affects neurons, causing them to die at increased rates or develop in multiple dysfunctional ways.
The investigators obtained further evidence of the critical role of astroglial cells in Down syndrome by implanting the skin-cell derived astroglial cells from Down syndrome patients into mice. Those mice then developed the neuropathological phenotypes of Down syndrome, while mice implanted with Down syndrome neurons did not.
Neuroprotective effects of antibiotics
The research team also screened candidate drugs using a ‘disease-in-a-dish’ model. When they administered minocycline — a tetracycline antibiotic with anti-inflammatory properties commonly used to treat bacterial infections, acne and arthritis — many of the abnormalities in the astroglial cells were corrected and there were more healthy interactions between the astroglia and neurons compared to the control cells without the defect.
“The advent of induced pluripotent stem cell technology has created exciting new approaches to model neurodevelopmental and neurodegenerative diseases for the study of pathogenesis and for drug screening,” said David Pleasure, professor of neurology and pediatrics and a co-author of the study. “Using this technology, the study is the first to discover the critical role of astroglial cells in Down syndrome as well as identify a promising pathway for exploring how a drug such as minocycline may offer an effective way to help treat it.”
Pleasure, who is research director at Shriner’s Hospital for Children Northern California and also directs the Institute for Pediatric Regenerative Medicine, noted that considerable research interest has arisen about the use of minocycline for diseases of the central nervous system because of the increasing evidence about its neuroprotective effects. Unlike many drugs, minocycline can cross from the bloodstream into the brain so that it can act on the astroglial cells. The drug has never been tested as a treatment for Down syndrome, and both Pleasure and Deng cautioned that its safety and efficacy will require clinical trials in people with Down syndrome.
Currently, Deng’s laboratory is conducting additional preclinical studies using the human-derived stem cells from Down syndrome patients and mouse models to determine whether cellular and behavioral abnormalities can be improved with minocycline therapy and other candidate drugs.
“The abnormalities we identified occur in the early stages of Down syndrome,” said Deng. “While much more research is needed, it is exciting to consider that pharmacological intervention in these cellular processes might help slow or even prevent disease progression.”
(Image: iStockphoto)

neurosciencestuff:

'Support cells' in brain play important role in Down syndrome

Researchers from UC Davis School of Medicine and Shriners Hospitals for Children – Northern California have identified a group of cells in the brain that they say plays an important role in the abnormal neuron development in Down syndrome. After developing a new model for studying the syndrome using patient-derived stem cells, the scientists also found that applying an inexpensive antibiotic to the cells appears to correct many abnormalities in the interaction between the cells and developing neurons.

The findings, which focused on support cells in the brain called astroglial cells, appear online today in Nature Communications.

“We have developed a human cellular model for studying brain development in Down syndrome that allows us to carry out detailed physiological studies and screen possible new therapies,” said Wenbin Deng, associate professor of biochemistry and molecular medicine and principal investigator of the study. “This model is more realistic than traditional animal models because it is derived from a patient’s own cells.”

Down syndrome is the most common chromosomal cause of mild to moderate intellectual disabilities in the United States, where it occurs in one in every 691 live births. It develops when a person has three copies of the 21st chromosome instead of the normal two. While mouse models have traditionally been used in studying the genetic disorder, Deng said the animal model is inadequate because the human brain is more complicated, and much of that complexity arises from astroglia cells, the star-shaped cells that play an important role in the physical structure of the brain as well as in the transmission of nerve impulses.

“Although neurons are regarded as our ‘thinking cells,’ the astroglia have an extremely important supportive role,” said Deng. “Astroglial function is increasingly recognized as a critical factor in neuronal dysfunction in the brain, and this is the first study to show its importance in Down syndrome.”

Creating a unique human cellular model

To investigate the role of astroglia in Down syndrome, the research team took skin cells from individuals with Down syndrome and transformed them into stem cells, which are known as induced pluripotent stem cells (iPSC). The cells possess the same genetic make-up as the donor and an ability to grow into different cell types. Deng and his colleagues next induced the stem cells to develop into separate pure populations of astroglial cells and neurons. This allowed them to systematically analyze factors expressed by the astroglia and then study their effects on neuron development.

They found that a certain protein, known as S100B, is markedly increased in astroglial cells from patients with Down syndrome compared with those from healthy controls. S100B released by astroglial cells promotes harmful astroglial activation (astrogliosis) and adversely affects neurons, causing them to die at increased rates or develop in multiple dysfunctional ways.

The investigators obtained further evidence of the critical role of astroglial cells in Down syndrome by implanting the skin-cell derived astroglial cells from Down syndrome patients into mice. Those mice then developed the neuropathological phenotypes of Down syndrome, while mice implanted with Down syndrome neurons did not.

Neuroprotective effects of antibiotics

The research team also screened candidate drugs using a ‘disease-in-a-dish’ model. When they administered minocycline — a tetracycline antibiotic with anti-inflammatory properties commonly used to treat bacterial infections, acne and arthritis — many of the abnormalities in the astroglial cells were corrected and there were more healthy interactions between the astroglia and neurons compared to the control cells without the defect.

“The advent of induced pluripotent stem cell technology has created exciting new approaches to model neurodevelopmental and neurodegenerative diseases for the study of pathogenesis and for drug screening,” said David Pleasure, professor of neurology and pediatrics and a co-author of the study. “Using this technology, the study is the first to discover the critical role of astroglial cells in Down syndrome as well as identify a promising pathway for exploring how a drug such as minocycline may offer an effective way to help treat it.”

Pleasure, who is research director at Shriner’s Hospital for Children Northern California and also directs the Institute for Pediatric Regenerative Medicine, noted that considerable research interest has arisen about the use of minocycline for diseases of the central nervous system because of the increasing evidence about its neuroprotective effects. Unlike many drugs, minocycline can cross from the bloodstream into the brain so that it can act on the astroglial cells. The drug has never been tested as a treatment for Down syndrome, and both Pleasure and Deng cautioned that its safety and efficacy will require clinical trials in people with Down syndrome.

Currently, Deng’s laboratory is conducting additional preclinical studies using the human-derived stem cells from Down syndrome patients and mouse models to determine whether cellular and behavioral abnormalities can be improved with minocycline therapy and other candidate drugs.

“The abnormalities we identified occur in the early stages of Down syndrome,” said Deng. “While much more research is needed, it is exciting to consider that pharmacological intervention in these cellular processes might help slow or even prevent disease progression.”

(Image: iStockphoto)

(via positivity-in-pain)

Blacks And Latinos Receive Worse Plea Deals Than White Or Asian Defendants

(via wrcsolace)

2 weeks ago - 97

jollygreenstoner:

My daily learning…..no words

(via locksandglasses)

Netflix brings The Magic School Bus into the internet era with a new series

sourcedumal:

fabulazerstokill:

jhenne-bean:

blacksupervillain:

kastiakbc:

dytabytes:

sparkofspaceandtime:

"Netflix made a big push into educational video when it picked up Scholastic’s TV shows, and we now know that this effort has paid off — The Magic School Bus has been “remarkably popular,” Netflix tells the New York Times. It only makes sense, then, that the streaming media pioneer has just ordered a new take on Magic School Bus for its next original series. The 26-episode show, The Magic School Bus 360°, will modernize Ms. Frizzle’s science classes for kids who are now surrounded by technology; robots and wearables (such as a biometric suit) will play a part.”

Oh gosh finally a worthwhile and amazing educational show is being revived! This is super exciting~

amazing!

OH MY GOOOOOOOD

what what WHAT

This and Reading Rainbow like… ; - ;

If the class isn’t as diverse as the original then this is complete crap

It better be even MORE diverse. I better see a young hijabi girl on the cast as well as a visibly disabled child, along with the original amount of diversity that MSB had

2 weeks ago - 4748

http://navigatethestream.tumblr.com/post/90999989985/monetizeyourcat-the-irony-of-your-doctor-has

monetizeyourcat:

the irony of “your doctor has to know you’re ‘male’ to treat you properly, doing otherwise is dangerous” is i know several women who have been subjected to horrid mismanagement of hrt levels because they have doctors who read from charts and assume paternalistic levels of…

(via nicocoer)

2 weeks ago - 148

Why aren’t more people freaking out about the new Venezuelan labor law?

bluandorange:

monetizeyourcat:

dancepunksnotdead:

You know, the one that gives housewives/full-time mothers a pension— wages for housework?

It’s ONLY A HUGE VICTORY FOR FEMINISM, SOCIALISM, AND WOMEN OF COLOR. Not a big deal or anything. Tumblr is mysteriously silent about this.

http://rabble.ca/columnists/2013/05/venezuelas-new-labour-law-best-mothers-day-gift

holy shit!

fucking COOL

(Source: new-here-again, via talesofthestarshipregeneration)

This Incredible LGBT-Friendly Program for Teens With HIV Needs Your Help

(Source: projectqueer, via afrodyke)

2 weeks ago - 193

disabilityhistory:

This Bus Is Transforming The Lives Of The Homeless

Image description: #1: Photo of a bus painted blue, looking clean and in good repair, with four icons (restroom man, restroom woman, mixed restroom man/woman, and person in a wheelchair) under shower heads. #2: Photo of a spacious, completely accessible restroom and roll-in shower.

The key point here is that they designed this in consultation with the  people who will be using it. It’s mobile so it can meet people where they are. It has private showers so women (and trans/gender nonconforming people, I would add, although the article doesn’t) feel safe. It has a secure place to store your things. And one of the four showers is completely accessible. I know a lot of wheelchair users who might rather use this shower than the ones in their own homes.

thenewwomensmovement:

rubbermaddox:

Ilustrations by the incredible Carol Rossetti check her out and follow her here! http://carolrossettidesign.tumblr.com/

These are so lovely!

mothernaturenetwork:

If Hoyoung Lee’s concept printer becomes reality, you’ll never throw away another pencil stub or buy another ink cartridge. The pencil printer separates the wood from pencils and uses the lead to print documents. There’s even a built-in eraser component that allows you to remove text from a page and reuse the paper, so you’ll be saving money and trees.
See more of bizarre green inventions.

mothernaturenetwork:

If Hoyoung Lee’s concept printer becomes reality, you’ll never throw away another pencil stub or buy another ink cartridge. The pencil printer separates the wood from pencils and uses the lead to print documents. There’s even a built-in eraser component that allows you to remove text from a page and reuse the paper, so you’ll be saving money and trees.

See more of bizarre green inventions.

(via blueklectic)